Counts Zeros Xor Pairs (GFG)

 Given an array A[] of size N. Find the number of pairs (i, j) such that

 A_i XOR A_j = 0, and 1 <= i < j <= N.

Input:
The first line of the input contains a single integer T denoting the number of test cases. The first line of each test case contains N. followed by N separate integers. 

Output:
For each test case, output a single integer i.e counts of Zeros Xors Pairs

Constraints
1 ≤ T ≤ 200
2 ≤ N ≤ 10^5
1 ≤ A[i] ≤ 10^5

Example:
Input :
2
5
1 3 4 1 4

3
2 2 2

Output :

2
3

Explanation :

Test Case 1: Index( 0, 3 ) and (2 , 4 ) are only pairs whose xors is zero so count is 2.


SOLUTION:

for i in range(int(input())):

    n=int(input())

    p=list(map(int,input().split()))

    p=sorted(p)

    count=0

    for i in range(0,n-1):

        for j in range(i+1,n):

            if p[i]==p[j]:

                count+=1

    print(count)       

Comments

Popular posts from this blog

Sort in specific order (GFG)

Chef and Remissness Problem Code: REMISS (CodeChef)

Short Notes Of computer Network